АКТУАЛЬНОСТЬ. Исследование продолжает ряд публикаций, посвящённых эффективности машинного распознавания дерматоскопических изображений меланомы кожи. В некоторых работах отечественных и зарубежных авторов сообщается о достижении высокой чувствительности и специфичности автоматизированной диагностики опухолей кожи. Существенные различия публикуемых данных могут быть результатом как применения разных алгоритмов, так и использования разных групп новообразований кожи для расчёта показателей точности. МАТЕРИАЛЫ И МЕТОДЫ. Сравнивали точность диагностики меланомы кожи двумя автоматизированными системами искусственного интеллекта. РЕЗУЛЬТАТЫ. Алгоритм на основе свёрточной нейронной сети улучшил общую точность диагностики на 7% по сравнению с алгоритмом без глубокого обучения, при этом показатель точности составил 78%. Предоставлен исходный набор из 100 использованных дерматоскопических изображений для самостоятельной оценки применимости полученных данных при знакомстве с имеющимися системами искусственного интеллекта. ЗАКЛЮЧЕНИЕ. Обозначены главные недостатки и возможные пути совершенствования автоматизированной диагностики опухолей кожи на основе цифровой дерматоскопии.