Рассматриваются только конечные группы. Пусть 𝐴 - группа автоморфмизмов группы
𝐺, содержащая все внутренние автоморфизмы, и 𝐹 - максимальный внутренний локальных экран насыщенной формации F. 𝐴-композиционный фактор 𝐻/𝐾 группы 𝐺 называется 𝐴-F-центральным, если 𝐴/𝐶𝐴(𝐻/𝐾) ∈ 𝐹(𝑝) для всех 𝑝 ∈ 𝜋(𝐻/𝐾). 𝐴-F-гиперцентром 𝐺 называется наибольшая А-допустимая подгруппа 𝐺, все 𝐴-композиционные факторы ниже которой 𝐴-F-центральны. Обозначается ZF(𝐺, 𝐴).
Напомним, что группа 𝐺 называется дисперсивной по Оре, если 𝐺 имеет нормальную
холлову {𝑝1, . . . , 𝑝𝑖}-подгруппу для 1 ≤ 𝑖 ≤ 𝑛, где 𝑝1 > · · · > 𝑝𝑛 - все простые делители |𝐺|. Главным результатом работы является: Пусть F - наследственная насыщенная
формация, 𝐹 - её максимальный внутренний локальный экран и 𝑁 - дисперсивная по
Оре 𝐴-допустимая подгруппа группы 𝐺, где Inn𝐺 ≤ 𝐴 ≤ Aut𝐺. Тогда и только тогда
𝑁 ≤ ZF(𝐺, 𝐴), когда 𝑁𝐴(𝑃)/𝐶𝐴(𝑃) ∈ 𝐹(𝑝) для любых силовской 𝑝-подгруппы 𝑃 группы
𝑁 и простого делителя 𝑝 порядка 𝑁.
В качестве следствий были получены известные результаты Р. Бэра о нормальных
подгруппах в сверхразрешимом гиперцентре и элементах гиперцентра.
Пусть 𝐺 - группа. Напомним, что 𝐿 𝑛(𝐺) = {𝑥 ∈ 𝐺 | [𝑥, 𝛼1, . . . , 𝛼𝑛] = 1 ∀𝛼1, . . . , 𝛼𝑛 ∈ Aut𝐺}
и 𝐺 называется автонильпотентной, если 𝐺 = 𝐿𝑛(𝐺) для некоторого натурального 𝑛. Из
главного результата можно извлечь критерии автонильпотентности групп. В частности,
группа 𝐺 автонильпотентна тогда и только тогда, когда она является прямым произведением своих силовских подгрупп и группа автоморфизмов любой силовской 𝑝-подгруппы
группы 𝐺 является 𝑝-группой для любого простого делителя 𝑝 порядка 𝐺. Приведены
примеры автонильпотентных групп нечетного порядка.