состоит в идентификации форм, заранее описанных в цифровом изображении и, в общем случае, в цифровом видеопотоке. Хотя, как правило, можно выполнять распознавание по видеофрагментам, процесс обучения обычно выполняется на изображениях. В данной работе рассматривается алгоритм классификации и распознавания объектов с использованием сверточных нейронных сетей. Цель работы - реализовать алгоритм обнаружения и классификации различных графических объектов, подаваемых с веб-камеры. Задача состоит в том, чтобы сначала классифицировать и распознавать объект с высокой точностью по заданному набору данных, а затем продемонстрировать способ генерации изображений для увеличения объема обучающего набора данных путем самописного генератора. Используемый алгоритм классификации и распознания является инвариантным к переносу, сдвигу и повороту. Существенной новизной в этой работе является создание самописного генератора, позволяющего применять различные виды аугментации (искусственное увеличение объема обучающей выборки путем модификации обучающих данных) для формирования каждый раз новых групп измененных изображений.