Материалов:
1 005 012

Репозиториев:
30

Авторов:
761 409

О новом классе интегралов, включающих обобщенные гипергеометрические функции

Дата публикации: 2024-04

Дата публикации в реестре: 2024-04-15T12:34:08Z

Аннотация:

В теории гипергеометрических и обобщенных гипергеометрических функций классические теоремы суммирования, такие как теоремы Гаусса, Бейли и Каммера для серии 2F1; Уотсона, Диксона, Уиппла и Саалшуз, играют ключевую роль. Приложения вышеупомянутых теорем о суммировании хорошо известны. В нашем настоящем исследовании мы стремимся оценить двадцать пять новых классов интегралов, включающих обобщенную гипергеометрическую функцию в форме единого интеграла: ∫ 1 0 xc−1(1 − x)c−13F2 [ a, b, c + 1 2 1 2 (a + b + i + 1), 2c + j ; 4x(1 − x) ] dx for i, j = 0, ±1, ±2. Результаты устанавливаются с помощью обобщений теоремы классической суммы Уотсона, полученной ранее Лавойе и др. [2]. Пятьдесят интересных интегралов в форме двух видов интегралов (двадцать пять каждый) также были даны в качестве особых случаев наших основных результатов

Тип: Journal Article


Связанные документы (рекомендация CORE)