On exact triangle inequalities in (q1; q2) -quasimetric spaces a function
f; such that
f -triangle inequality is more exact than any (
q 1 ;
q 2 Asymptotically sharp bounds in the Hardy-Littlewood inequalities on mean values of analytic functions with the usual norm ∥
f∥ p. It is known from the work of Hardy and Littlewood that for
q > p, the constants C (p,
q Билинейные спаривания для голоморфных (q,p)-форм связи с общей (
q,p)-двойственностью форм. Получено "симметричное" билинейное спаривание, которое можно
Structural properties of Q-degrees of n-c. e. setsIn this paper we study structural properties of n-c. e.
Q-degrees. Two theorems contain results
Gravitational baryogenesis in f(Q, C) gravity current accelerated state. In this paper, we examine the gravitational baryogenesis for
f(Q, C) gravity