К условиям регулярности в математическом программировании оптимизации и является достаточно общим условием регулярности (
constraint
qualification) в задачах
О СООТНОШЕНИИ МЕЖДУ СТАБИЛИЗАЦИЕЙ СВЯЗЕЙ И ДИССИПАТИВНОЙ ФУНКЦИИ ПРИ РЕШЕНИИ ОБРАТНОЙ ЗАДАЧИ ДИНАМИКИ solution with respect to the
constraint equations. To obtain a stable numerical solution, the method
DYNAMIC EQUATIONS OF CONTROLLED MECHANICA L SYSTEM WITH REDUNDANT HOLONOMIC CONSTRAINTS are discussed. The case of redundant
constraints and positive semidefinite mass matrix in obtaining
Solution of elliptic optimal control problem with pointwise and non-local state constraints elliptic equation, with pointwise control
constraints and pointwise and non-local (integral) state
Minimax optimal control problem with state constraints for the so-called “minimax” optimal control problems with state
constraints. In this class of problems
State Constraints in Impulsive Control Problems: Gamkrelidze-Like Conditions of OptimalityAn impulsive control problem with state
constraints is considered. A Pontryagin maximum principle
Two-dimensional path finding subject to geometric constraints special form. Algorithms that are able to solve this problem in the case of geometric
constraints, more